89 research outputs found

    Crises and collective socio-economic phenomena: simple models and challenges

    Full text link
    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the Random Field Ising model (RFIM) indeed provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilising self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of RFIM-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can badly fail at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria to be reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.Comment: Review paper accepted for a special issue of J Stat Phys; several minor improvements along reviewers' comment

    Point sets on the sphere S2\mathbb{S}^2 with small spherical cap discrepancy

    Full text link
    In this paper we study the geometric discrepancy of explicit constructions of uniformly distributed points on the two-dimensional unit sphere. We show that the spherical cap discrepancy of random point sets, of spherical digital nets and of spherical Fibonacci lattices converges with order N1/2N^{-1/2}. Such point sets are therefore useful for numerical integration and other computational simulations. The proof uses an area-preserving Lambert map. A detailed analysis of the level curves and sets of the pre-images of spherical caps under this map is given

    Assume-Guarantee Based Compositional Reasoning for Synchronous Timing Diagrams

    No full text
    corecore